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The finite differences method is used to calculate the temperature fields in an 
abrasive disk as a function of grinding conditions. 

As a rule, the heat generated in the chip-formation zone during grinding has an adverse 
effect on the efficiency of the grinding operation, the quality of the surfaces of the part 
being ground, and the cutting ability of the abrasive tool. It is known [i, 2] that the 
thermal activity of contacting bodies depends to a considerable extent on their mutual velo- 
cities and the ratios of their thermophysical characteristics. It follows from an analysis 
of oscillograms depicting the change in temperatures on an abrasive grain [3] that the 
regime of thermal saturation in the grain begins after a very short period of loading. The 
grain actively removes heat from the cutting zone only during this period. The grain's 
thermal activity drops sharply when the thermal saturation regime is reached, which depends 
on the geometric dimensions of the contact region and the grinding speed. 

Considering that the increasingly stringent requirements of industry in regard to 
machining efficiency are tending to increase grinding speeds, it is important to analyze the 
effect of the kinematics of grinding and the thermophysical properties of the abrasive tool 
on the thermal state of the tool. 

Here, we calculate the temperature fields in an abrasive disk with allowance for the 
cyclic heating and variable thermophysical characteristics of the tool, the grinding regimes, 
the geometric dimensions of the contact zone, and the ratio of heating time to cooling time 
for different heat-transfer coefficients. During grinding, the disk is subjected to the cyc- 
lic action of a heat source: heating in the zone of contact with the workpiece and cooling 
outside this zone. 

Established formulas [i] describe the propagation of heat for the case when the disk 
completely loses its heat during the cooling period. In this case, the boundary conditions 
will be the same for all grinding cycles. Otherwise, formulas based on the scheme of a 
single loading by the heat source are valid only for the first grinding cycle. The second 
and subsequent cycles have their owncharacteristic boundary conditions. However, in actual 
grinding operations, there is not sufficient time for thermal processes to stabilize during 
one disk revolution even in the presence of cooling. 

When solving the differential equation of heat conduction in calculations of the tempera- 
ture fields created during multiple heatings, it is necessary to consider the following fea- 
tures of the actual grinding process. First of all, the boundary conditions change with the 
advent of each successive cooling stage, and each subsequent problem must be examined as a 
continuation of the previous problem. Secondly, the initial conditions for each subsequent 
problem should be the solution of the previous problem at the moment one stage is replaced 
by another. The problem being examined here is solved in the following formulation [4]: 

c?T 1 (x, x) OZT1 (x, x) 
a - -  , O ~ x < o o ;  O ~ x < ' q ;  

Ox Ox 2 

T~ (oo, ~) = T0; T~ (0, ~) ---- T~ = const; 

T1(x, 0) = TQ (at the beginning of the calculation); T1(x, 0) = f(x) (with repetition of the 
cycles), where f(x) is the temperature field obtained at the end of the preceding period; 

cycle II (cooling): 
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= .[T~(0, x)--To]; T~(oo, x)=To; T2(x, 0) ---- ~ (x), 

OX 

where #(x) is the temperature field at the end of the preceding heating period; 

cycle III (heating): 

O T8 (x, "0 OZTs (x, ~) . 
. . . .  a , Ta (oo, ~) = To; T3 (0, ~ = Tc = const;  

Ox ax 2 

T3 (x, 0) = T~ (x, x~). 

In the above scheme, boundary conditions of the first kind are adopted in the heating 
cycle. Such a choice is justified by the following consideration. According to research 
in metal physics, the melting point is reached in the deformation zone [5]. In regard to 
grinding, it was established experimentally in [3, 6] that the melting point of the material 
of the workpiece is reached on the grains of the disk. Thus, as a first approximation we 
assume that the temperature on the surface of the body in question is known and is equal to 
the melting point of the material being ground. As a result, the first and third boundary- 
value problems of heat conduction alternate in the chosen theoretical scheme. The steady- 
state regime is established a certain amount of time after the beginning of grinding. In 
this regime, the next pairwise cycle (heating-cooling) will repeat the preceding cycle, i.e., 
the process of heat accumulation ends and thermal saturation takes place. The foregoing 
scheme for calculation of the temperature field, taking into account the multiple heatings 
and heat accumulation, makes it possible (in contrast to the formulation with a single heat- 
ing) to study the transient period, determine the duration of this period, and establish the 
amount of heat accumulated as a function of the grinding conditions. 

The scheme is based on a unidimensional heat-conduction equation. The validity of this 
approach was checked by analyzing data obtained by the method of electrothermal analogy on a 
two-dimensional electrical network model. The results showed that the size of the error de- 
creases with an increase in the depth of the point being studied and the velocity of the 
heat source and a decrease in the thermal conductivity of the test material. It was found 
that when a metal part is being ground and the velocity of the heat source ranges up to 
12 m/min, the error in the contact zone is 2.7%. At a depth of 0.2 mm or more, the corres- 
ponding error is 0%. In practice, the velocity of the heat source over the working surface 
of the disk is at least 30 m/sec, while the thermal conductivity of the abrasive tool is 
substantially less than the thermal conductivity of the metal being ground. Thus, with 
allowance for the dimensions of the surface being ground - which are considerably greater 
than the dimensions of the surface being ground - which are considerably greater than the 
dimensions of the heat source - we can justifiably use a unidimensional formulation of the 
thermal problem in calculating the temperature fields in an abrasive disk. The stated 
boundary-value problem was solved with the use of an implicit grid method [7]. 

Having chosen variable time and space steps for the grid and having replaced the deriva- 
tives by finite differences, we reduce the heat-conduction equation to the following form: 

Ti , l+ l - -T i , j  
m 

w i t h  i = 1 ,  2 ,  . . . ,  n - 1 ;  j = 0 ,  1 ,  2 ,  
grid, respectively. 

h 

..., where m and h are the time and space steps of the 

The time step of the grid was 1.10 -4 sec during the heating period and 5-10 -4 sec during 
the cooling period. The size of the step for the space variable was chosen in relation to 
the depth of the point being studied; the step was 0.2 mm within the range up to 2 mm, 0.5 
mm in the range 2-7 ~m, and i mm above 7 n~n. 

The resulting system of linear equations was solved by the trial-run method on an ES-1020 
computer. The condition of stabilization of the heating process was a difference of no more 
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Fig. i. Distribution of the temperature fields in an abrasive 
disk in relation to the cycllcity of the heating and the grinding 
conditions: a) D = 500 mm, s = 15 man, v = 50 m/sec, Tl = 0.0003 
sec, Y2 = 0.031 sec, nstab = 196 cycles; b) D = 330 mm, Z = 15 
mm, v = 33 m/sec, ~l = 0.0005 sec, ~2 = 0.047 sec, nstab = 219 
cycles; c) D = 260 mm, s = 40 mm, v = 26 m/sec, ~z = 0.0015 sec, 
�9 2 = 0..030 sec, nstab = 453 cycles; the numbers next to the curves 
denote the number of pairwise heating-cooling cycles. 

than 0.5 ~ in the temperatures of adjacent cycles. The temperature fields were calculated 
for abrasive disks on a bakelite binder. The disks had thermal conductivities of 2 and 4 
W/(m'K), a heat capacity of 400 J/(kg-K), and a density of 2.8.103 kg/m 3. The heat-transfer 
coefficients were 200, 300, and 500 W/(m2"K). The heating time for each point of the working 
surface of the disk during one of its rotations (one cycle) was determined from the relation- 
ship between the length of the contact arc and the frequency of disk rotation and was 
0.0155-0.047 sec. The ratio of the heating time to the cooling time fluctuated within the 
range 0.00965-0.153 and embraced the conditions typical of plane grinding, cutting of parts, 
and sharpening of the tool. 

It was established as a result of calculations that thermal processes do not stabilize in 
the abrasive disk during one rotation (pairwise heating-cooling cycle) under the investigated 
conditions. Instead, heat builds up over several cycles. This is expressed in an increase in 
the temperature of the surface layers and the depth of the heat-affected zone. A steady-state 
regime is established in the disk a certain time after the beginning of grinding. Here, the 
next pairwise cycle repeates the previous cycle to within the 0.5~ specified by the pro- 
gram. Beginning with this moment, the estabished temperature field, having reached a certain 
depth, begins tobe displaced toward the center of the disk at the rate at which the disk 
wears. The stabilization time (the time required to reach the steady-state regime), the depth 
of heating during this time, and the maxim1~n heating temperature all depend in this case on 
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TABLE i. Calculated Values of the Coefficient k and 
the Stabilization Time (nstab) in Relation to the 
Grinding Conditions 

260 
260 
500 
330 
500 
500 
500 

Grinding conditions 

l u 

40 50 
40 26 
40 50 
15 33 
15 5O 
15 75 
15 I00 

T1 

0,0008 
0,0015 
0,0008 
0,0005 
0,0003 
0,0002 
0,00015 

T~ 

0,0155 
0,030 
0,0306 
0,047 
0,031 
0,0207 
0,0155 

~1=ulat___ ~ 

0,0516 
0,0500 
0,0261 
0,0106 
0,0097 
0,0097 
0,0096 

values 

n ~tab 

459 
453 
364 
219 
196 
182 
99 

the ratio of the contact and noncontact periods, other conditions (thermophysical characteristics, 
heat transfer, etc.) being equal. 

Figure i shows the temperature fields in an abrasive disk 500 mm in diameter on a bake- 
lite binder (~ = 2 W/(m'K); c = 400 J/(kg'K); y = 2800 kg/m 3) in the case of plane machine 
grinding. The heat-transfer coefficient in the noncontact period a = 300 W/(m2-K). The 
ratio of the durations of the contact and noncontact periods (k) changed due to a reduction 
in the diameter of the disk as it wore and an increase in the length of the contact arc (such 
as is seen in the rough grinding of rolled products). Thus, in the use of a tool with a 
diameter D = 500 mm at a velocity v = 50 m/sec, the coefficient k, equal to the ratio rl/T2, 
takes the value 0.00968 (Fig. la). 

At D = 300 mm and v = 33 m/sec, k = 0.01064 (Fig. ib). For a disk worn the maximum 
amount (D = 260 mm) and operating at a velocity of 26 m/sec, k = 0.050 (Fig. ic). 

It should be noted that the temperature and depth of heating of the disk increase with 
an increase in the ratio k. The greater k, the longer the period of nonsteady heating. 
Thus, with k = 0.00968, stabilization of the temperature field beings in the 196th cycle. 
With k = 0.050, it begins in the 453rd cycle (Table i). There is also a significant increase 
in the depth of propagation of heat into the disk. The same result is obtained with an in- 
crease in the thermal conductivity of the disk and a decrease in the heat-transfer coefficient. 

Direct measurement of temperature with a thermal probe was used to experimentally study 
the process of heat buildup in the abrasive disk. Here, temperature was measured near the 
working surface of the disk at certain moments of its operation (with intervals of i0 min). 
It was found that an increase in the operating time of the disk, i.e., the number of grinding- 
cooling cycles was accompanied by an increase in the temperature of its working surface. 
This is a consequence of the heat buildup. Heat is accumulated even more rapidly as the disk 
wears, in connection with its loss of mass and the reduction in grinding speed. 

The buildup of heat is accompanied by a reduction in the thermal activity of the disk, 
i.e., a reduction in its ability to remove heat from the cutting zone. This adversely affects 
the quality of the ground surface. During the experiment, the 7 • 15 mm surface being studied 
was in constant contact with the end surface of the disk. By varying the position of the 
specimen relative to the trajectory of the disk grains, we also changed the length of the arc 
of contact between points of the disk and the workpiece, i.e., the time of heating of the 
disk surface Tl. In this case, the pattern of crack formation changed dramatically: with an 
increase in the length of the arc from 7 to 15 mm, there was a substantial increase in the 
number of cracks on the ground surface. 

The rate of increase in the temperature of the heated part of the disk depends both on 
the depth of the point under consideration - as shown in Fig. 2 for conditions similar to 
Fig. ic - and on the number of cycles. Thus, the surface layers (curve I) reach thermal 
saturation very quickly. The temperature of this zone reaches 750~ during the first i00 
cycles. It increases by only 100~ during the next 300 cycles and does not increase signifi- 
cantly after the 450th cycle. The latter is indicative of the attainment of thermal equili- 
brium. The layers of the disk located at a depth of 3.5 mm relative to the working surface 
are heated to 230~ during the first i00 cycles and to 550~ after 300 cycles (curve 4). 
Thus, the deeper layers reach thermal saturation more slowly than the surface layers. THe 
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Fig. 2. Rate of heating of the surface 
layer of an abrasive disk over time with 
D = 260 n~n, v = 26 m/see, K = 0.95, I = 
2 W/(m-K), ~ = 1.8-10 -6 m/see 2, and = = 
300 W/(m2-K): curves I, 2, 3, and 4 
correspond to the temperatures in the tool 
0.2, 0.4, 2.5, and 3.5 mm from the surface, 
respect ively. 

penetration of excess temperature to a greater depth - which as also recorded by direct 
measurement of the temperature on the disk - indicates the presence of heat sinks on the 
spindle of the machine. This must be taken into account in the mathematical model for a 
more accurate description of thermal processes. The heating of the working surface of the 
disk to temperatures considerably in excess of the temperature at which the binder breaks 
down initiates chemical reactions between components of the disk, the workpieee, and the 
process medium. The possibility of the occurrence of such processes was determined theo- 
retically from the change in the isobaric-isothermal potential of the chemical reactions. 
In theoretical studies of the cutting zone, the last-mentioned fact means that it is 
necessary to introduce a term reflecting the thermal effect of possiSle chemical reactions 
into the mathematical model of the heat source. An increase in the number of cycles is 
accompanied by a reduction in the effect of the cyclicity of the heating on the temperature 
gradient in the interior of the disk. Thus, for the layers located 3.5 mm from the sur- 
face, the difference between the heating and cooling curves is 6.5~ after 25 cycles but only 
0.3~ in the saturation regime (after 450 cycles) (see Fig. ic). In connection with the 
cyclic nature of the heating, the temperature waves decay exponentially with increasing dis- 
tance from the surface. This makes it possible to replace the periodic heat flow through 
the contacting working surface by a constant heat flux in the initial model. The effect 
of cyclicity increases with an increase in diffusivity. By reducing diffusivity - such as 
through an increase in the heat capacity of the abrasive material due to the use of special 
fillers - it is possible to reduce the size of the heat-affected zone and the degree of 
softening of the disk and to improve the disk's wear resistance. The results obtained here 
give an idea of the effect of grinding conditions on the thermal state of the abrasive disk 
and its thermal activity and help solve both the direct problem - optimize cutting regimes 
using an abrasive tool with specified characteristics - and the inverse problem - calculate 
the properties required of the disk for specified grinding conditions. 

NOTATION 

a, diffusivity, m2/sec; T1, T2, duration of contact (heating) and noncontact (cooling) 
periods, respectively, sec; Tc, temperature on the surface of contact of an abrasive grain 
with the metal being ground, ~ T~,2,3, temperature of the abrasive disk in the first, 
second, and third cycles, respectively; To, ambient temperature, ~ ~, heat-transfer co- 
efficient, W/(m2"K); l, thermal conductivity of the abrasive disk, W/(m-K); c, heat capa- 
city of the abrasive material, J/(kg'K); y, density of the abrasive material, kg/m3; D, 
diameter of the disk, mm; v, grinding speed, m/see; k, coefficient equal to the ratio Tz/~2; 
h, depth of the surface layer of the disk, n~n; n, number of pairwise heating-cooling cycles; 
nstab, number of pairwise heating-cooling cycles until stabilization of the disk-heating 
process; T, temperature of the disk, ~ s length of the arc of contact of the disk with 
the workpiece, mm. 
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